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LETTER TO THE EDITOR 

Equivalence of an Ising model with two- and three-spin 
interactions with the four-state Potts model 

H W J Blote 
Laboratorium voor Technische Natuurkunde, Postbus 5046, 2600 CA Delft, The Nether- 
lands 

Received 6 October 1986 

Abstract. The Ising model on the square lattice with two-spin interactions in they  direction 
and three-spin interactions in the x direction is related to the four-state Potts model on 
the square lattice. This mapping becomes exact in the limit of strong three-spin couplings. 

We consider an Ising model on the square lattice with two-spin interactions in the 
vertical direction and with three-spin interactions in the horizontal direction. The 
reduced Hamiltonian of an m x 3 n  system is 

H'"' /kT = -E (K2s!-1,Js1,J+ K3sZ,J-2sZ,J-~sl,J) (1) 
1.J 

with K2>0,  K3> 0, SI, = i l ,  where i = 1,2, .  . . , m and j = 1,2 , .  . . , 3n  denote the ver- 
tical and horizontal coordinates respectively. This model is self-dual (see, e.g., Gruber 
et a1 1977). If a single phase transition exists for constant ratio K2/K3, then it must 
be located at the self-dual point determined by 

The model has already received considerable attention in recent years (Penson et a1 
1982, Debierre and Turban 1983, Igl6i et a1 1983, 1986, Vanderzande and Igl6i 1987). 
Parts of these references treat the anisotropic limit K2 + CO, K3 + 0. The results confirm 
that there is indeed a phase transition at the self-dual point. It has been suggested 
that the phase transition is of the four-state Potts type. This suggestion was supported 
by Horiguchi and Goncalves (1985) who constructed a mapping between the Baxter-Wu 
model and a model resembling that described by equation (1). But numerical analyses 
of the model ( l ) ,  using finite-size scaling and other methods, were found to produce 
estimates of the temperature exponent yT=j, which is too low in comparison with the 
exact value y T = i  for the four-state Potts model (den Nijs 1981, Black and Emery 
1981). However, a finite-size analysis of small four-state Potts models (Blote and 
Nightingale 1982) also yielded estimates considerably below y ,  = 2. These unusually 
large deviations could be satisfactorily explained by the presence of a marginal operator 
(Nienhuis et a1 19791, leading to logarithmic terms in the finite-size expansion of the 
free energy (Blote and Nightingale 1982, Cardy 1986). 

Thus the numerical results for the temperature exponent of the model (1) are not 
inconsistent with four-state Potts universality, but so far they have failed to provide a 
trustworthy confirmation of this classification. Under these circumstances it remains 
of interest to construct analytic evidence to answer this problem. For this purpose, 
we take the opposite limit to the one originally considered by Penson et a1 (1982): 

sinh(2K2) sinh(2K3) = 1. (2) 

exp( -2K3) = E K2 = / L E  E + O  
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where p-l is a temperature-like variable. Duality (2) predicts the critical value p, = 1. 
The mapping on the four-state Potts model is established by combining all triplets 

si,3j-1,  si,3j) and executing the sum in the partition function over all ~13j-2. The 
remaining spins are condensed into variables uij which can assume four possible values. 

A convenient way to show that the resulting interactions between the variables uiJ 
are of the four-state Potts type uses the transfer matrix in analogy with the second 
description by Schultz et a1 (1964). Consider a rectangular model (1) with dimensions 
m and 3n ,  free boundaries in the horizontal direction and periodic boundaries in the 
vertical direction: soJ = smj  (although this is not essential). Columns of spins s,Ji = 
1,2, .  . . , m )  are denoted sj.  The partition sum Z'"' is divided into 22m restricted sums: 

z ( ~ ) ( s ~ ~ - ~ ,  s3,,) = 1 e x p [ - ~ ( " ' / k ~ ]  
~ I , S 2 . . . . . S 3 . - 2  

with H'") defined by (1 ) .  The following relation exists between these restricted sums 
for systems with lengths 3 n  and 3 ( n  + 1): 

where T is the transfer matrix, and the spin variables are written in terms of 

a j  = (ulj, u2j, . * 3 u m j )  

where 

(4) (T.. ij = s. 1,3j-1 . +isi,3,+? 

can assume the values 1 ,  2, 3 and 4. The transfer matrix is given by 

T(u,+, ,  a,) = c e x p [ - ( ~ ' " + ' ' - ~ ' " ' ) / k ~ ] .  
S3n+1 

The interactions contributing to T are the 3 m  two-spin interactions in columns 3n  + 1 
to 3 n  + 3 ,  and the 3 m  three-spin interactions between the spins in columns 3n  - 1 to 
3 n  + 3 (see figure 1). As a consequence of the anisotropic limit, we need consider, 
apart from the leading contributions to T, only corrections which are first order in E 

(Kogut 1979). The leading contributions are equal to exp[3mK3] = E - ~ " ~ ,  and are 
located on the diagonal of T: no spin flip. Only one term in the summation over ~ 3 , , + 1  

survives in each diagonal element of T, namely the term with 

~ i , 3 n - 1 ~ i , 3 n ~ i , 3 n + 1  = 1 (6) 
for all i. All other terms are of too high an order in E.  The surviving terms also contain 
contributions of relative order E, due to the weak couplings K2. These contributions are 

m 

( si - 1,3 n + 1 si.3 n + 1 + si - 1,3 n +2si,3 n +2 + si - 1,3 n +3 si.3 n + 3  ) * 
i = l  

FE - 3 m / 2  

Using (4) and (61, the diagonal contributions of relative order E can also be written 
... 

The leading off-diagonal terms in T are due to a single spin flip, i.e. uiSn # ui,n+l for 
only one value of i. Given such a spin flip, only one term of sufficiently low order in 
E survives the summation over Its value is E ~ - ~ " " ' ,  independent of the remaining 
degrees of freedom of the U variables. Combining all these contributions yields 

T ( ~ , + ~ ,  a n )  = E-3m/2(1 - mpE)[o+ o n ) ]  (7)  
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Figure 1. Interactions contributing to the transfer matrix T defined in the text. Vertical 
two-spin couplings K ,  are indicated by broken lines. Horizontal couplings K ,  are shown 
by curved lines, each of which connects three spins, intersecting the middle one. Columns 
of spins si,, are denoted s,. Two neighbouring columns % k - ,  and % k  are combined into 
one column of Potts variables uk. 

where 
m m ... ... 

t ( u n + 1 ,  0") =4P'u"un+, c %,nuz+,." + ( l  - ''t.nrz,n+l) n " J k , n U k , n + l .  
i = l  i = l  k # i  

Next, consider the Potts model described by 

Hk',tS=c K X S I z , , I r , l + ~ +  K)"7,,,T,+1,1 

i,j 

with i = 1,2, . . . , m, j = 1,2,. . . , n, and T~ = 1, 2, 3 or 4, in the anisotropic limit 
exp( - K,) = E K y  = 4 p ~  E + O  

(9) 

where p-' plays the role of the temperature variable. Columns of Potts variables 
T ~ ~ ,  i = 1,2,. . . , m are taken together as 7,. The transfer matrix which adds a column 
T , , + ~  to the model (9) is 

(10) 
where the definition (8) o f t  applies also in this case. A comparison with (7) shows 
that the two transfer matrices differ only by a simple multiplicative factor. Hence, the 
free energies of the two models (1) and (9) per physical unit of area (one lattice unit 
in the vertical direction, E - ~  units of the Potts model in the horizontal direction, 3 c - I  
lattice units of the Ising model in the horizontal direction) differ only by a trivial (but 
divergent) contribution: 

TPotts(Tn+1, 7, )  = E - m [ l + E t ( T n + i ,  T n ) ]  

1 1 1  
E ~m fPotts = - In -+- A (m,  p )  
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where A (  m, p )  is the leading eigenvalue of t. The critical behaviour, which resides in 
h ( m ,  p ) ,  is identical for both models. 

It seems very unlikely that the model (1) would leave the four-state Potts universality 
class when K 3  becomes finite (and the mapping is no longer exact). In the first place, 
a change of ratio K 2 / K 3  may be associated with a trivial rescaling in one direction, 
leaving critical exponents invariant. Furthermore, recent extensive Monte Carlo simu- 
lations of the model? (1) with K 2  = K 3  have accurately confirmed (Blote et a1 1986) 
the four-state Potts nature of the phase transition. 

This work was supported by the FOM (‘Stichting voor Fundamenteel Onderzoek der 
Materie’). 
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t This model is called the A ~ I  (anisotropic two times three Ising) model by the group operating the DISP, 
the special purpose computer used for these simulations. 


